

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	Reg 0.8 documentation 
 
      

    


    
      
          
            
  
Welcome to Reg’s documentation

Reg is a Python library that provides generic function support to
Python. It help you build powerful registration and configuration APIs
for your application, library or framework.



	Using Reg
	Introduction

	Example





	Generic functions
	A Hypothetical CMS

	size methods

	Adding size from outside

	Generic size

	New File content

	New HtmlDocument content

	Doing this with Reg

	Using classes

	Multiple dispatch





	Service Discovery
	classgeneric





	Lower level API
	Registering non-functions

	Getting all

	Using the Registry directly





	Composition
	ClassRegistry

	Caching

	Composing class lookups





	API

	Developing Reg
	Install Reg for development

	Running the tests

	Running the documentation tests

	Building the HTML documentation

	Various checking tools





	History of Reg
	Reg History

	Brief history of Zope Component Architecture












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2010 - 2014, Morepath Developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Reg 0.8 documentation 
 
      

    


    
      
          
            
  
Using Reg


Introduction

Reg lets you write generic functions [https://en.wikipedia.org/wiki/Generic_function].  To support this, Reg
provides an implementation of multiple dispatch [http://en.wikipedia.org/wiki/Multiple_dispatch] in Python. Reg lets
you define methods outside their classes as plain Python
functions. Reg in its basic use is like the single dispatch
implementation described in Python PEP 443 [http://www.python.org/dev/peps/pep-0443/], but Reg provides a lot
more flexibility.

Reg supports loose coupling. You can define a function in your core
application or framework but provide implementations of this function
outside of it.

Reg gives developers fine control over how to find implemenations of
these functions. You can have multiple independent dispatch
registries, and you can also compose them together. For special use
cases you can also register and look up other objects instead of
functions.

What is Reg for? Reg offers infrastructure that lets you build more
powerful frameworks – frameworks that can be extended and overridden
in a general way. Reg may seem like overkill to you. You may very well
be right; it depends on what you’re building.




Example

Here is an example of Reg. First we define a generic function:

import reg
@reg.generic
def title(obj):
   return "we don't know the title"





We now create a few example classes. We want to be able to get the title
for both.

class TitledReport(object):
   def __init__(self, title):
      self.title = title

class LabeledReport(object):
   def __init__(self, label):
      self.label = label





In one case there’s an attribute called title but in the
other case we have an attribute label we want to use as the title. We
will implement this behavior in a few plain python functions:

def titled_report_title(obj):
    return obj.title

def labeled_report_title(obj):
    return obj.label





We now create a Reg reg.Registry, register our
implementations in it using reg.IRegistry.register(), and then
tell Reg to use it automatically using reg.implicit.Implicit.initialize():

registry = reg.Registry()
registry.register(title, [TitledReport], titled_report_title)
registry.register(title, [LabeledReport], labeled_report_title)
from reg import implicit
implicit.initialize(registry)





Once we’ve done this, our generic title function works on both
titled and labeled objects:

>>> titled = TitledReport('This is a report')
>>> labeled = LabeledReport('This is also a report')
>>> title(titled)
'This is a report'
>>> title(labeled)
'This is also a report'





Our example is over, so we reset the implicit registry set up before:

implicit.clear()





Why not just use plain functions or methods instead of generic
functions? Often plain functions or methods will be the right
solution.  But not always – in this document we will examine a
situation where generic functions are useful.






Generic functions


A Hypothetical CMS

Let’s look at how Reg works within the context of a hypothetical
content management system (CMS).

This hypothetical CMS has two kinds of content item (we’ll add more
later):


	a Document which contains some text.

	a Folder which contains a bunch of content items, for instance
Document instances.



This is the implementation of our CMS:

class Document(object):
   def __init__(self, text):
       self.text = text

class Folder(object):
   def __init__(self, items):
       self.items = items








size methods

Now we want to add a feature to our CMS: we want the ability to
calculate the size (in bytes) of any content item. The size of the
document is defined as the length of its text, and the size of the
folder is defined as the sum of the size of everything in it.


len(text) is not in bytes!

Yeah, we’re lying here. len(text) is not in bytes if text is in
unicode. Just pretend that text is in ASCII only for the sake of
this example, so that it’s true.



If we have control over the implementation of Document and
Folder we can implement this feature easily by adding a size
method to both classes:

class Document(object):
   def __init__(self, text):
       self.text = text

   def size(self):
       return len(self.text)

class Folder(object):
   def __init__(self, items):
       self.items = items

   def size(self):
       return sum([item.size() for item in self.items])





And then we can simply call the .size() method to get the size:

>>> doc = Document('Hello world!')
>>> doc.size()
12
>>> doc2 = Document('Bye world!')
>>> doc2.size()
10
>>> folder = Folder([doc, doc2])
>>> folder.size()
22





Note that the Folder size code is generic; it doesn’t care what
the items inside it are; if they have a size method that gives the
right result, it will work. If a new content item Image is defined
and we provide a size method for this, a Folder instance that
contains Image instances will still be able to calculate its
size. Let’s try this:

class Image(object):
    def __init__(self, bytes):
        self.bytes = bytes

    def size(self):
        return len(self.bytes)





When we add an Image instance to the folder, the size of the folder
can still be calculated:

>>> image = Image('abc')
>>> folder.items.append(image)
>>> folder.size()
25








Adding size from outside


Open/Closed Principle

The Open/Closed principle [https://en.wikipedia.org/wiki/Open/closed_principle] states software entities should be open
for extension, but closed for modification. The idea is you may have
a piece of software that you cannot or do not want to change, for
instance because it’s being developed by a third party, or because
the feature you want to add is outside of the scope of that software
(separation of concerns). By extending the software without
modifying its source code, you can benefit from the stability of the
core software and still add new functionality.



So far we didn’t need Reg at all. But in the real world things may be
a lot more complicated. We may be dealing with a content management
system core where we cannot control the implementation of
Document and Folder. What if we want to add a size calculation
feature in an extension package?

We can fall back on good-old Python functions instead. We separate out
the size logic from our classes:

def document_size(document):
    return len(document.text)

def folder_size(folder):
    return sum([document_size(item) for item in folder.items])








Generic size


What about monkey patching?

We could monkey patch [https://en.wikipedia.org/wiki/Monkey_patch] a size method into all our content
classes. This would work. But doing this can be risky – what if the
original CMS’s implementers change it so it does gain a size
method or attribute, for instance? Multiple monkey patches
interacting can also lead to trouble. In addition, monkey-patched
classes become harder to read: where is this size method coming
from? It isn’t there in the class statement, or in any of its
superclasses! And how would we document such a construction?

In short, monkey patching does not make for very maintainable code.



There is a problem with the above implementation however:
folder_size is not generic anymore, but now depends on
document_size. It would fail when presented with a folder
with an Image in it:

>>> folder_size(folder)
Traceback (most recent call last):
  ...
AttributeError: ...





To support Image we first need an image_size function:

def image_size(image):
   return len(image.bytes)





We can now write a generic size function to get the size for any
item we give it:

def size(item):
    if isinstance(item, Document):
        return document_size(item)
    elif isinstance(item, Image):
        return image_size(item)
    elif isinstance(item, Folder):
        return folder_size(item)
    assert False, "Unknown item: %s" % item





With this, we can rewrite folder_size to use the generic size:

def folder_size(folder):
    return sum([size(item) for item in folder.items])





Now our generic size function will work:

>>> size(doc)
12
>>> size(image)
3
>>> size(folder)
25





All a bit complicated and hard-coded, but it works!




New File content

What if we now want to write a new extension to our CMS that adds a
new kind of folder item, the File, with a file_size function?

class File(object):
   def __init__(self, bytes):
       self.bytes = bytes

def file_size(file):
    return len(file.bytes)





We would need to remember to adjust the generic size function so
we can teach it about file_size as well. Annoying, tightly
coupled, but sometimes doable.

But what if we are actually yet another party, and we have control of
neither the basic CMS nor its size extension? We cannot adjust
generic_size to teach it about File now! Uh oh!

Perhaps the implementers of the size extension were wise and
anticipated this use case. They could have implemented
size like this:

size_function_registry = {
   Document: document_size,
   Image: image_size,
   Folder: folder_size
}

def register_size(class_, function):
   size_function_registry[class_] = function

def size(item):
   return size_function_registry[item.__class__](item)





We can now use register_size to teach size how to get
the size of a File instance:

register_size(File, file_size)





And it would work:

>>> size(File('xyz'))
3





This is quite a bit of custom work on the parts of the implementers,
though. The API to manipulate the size registry is also completely
custom. But you can do it.




New HtmlDocument content

What if we introduce a new HtmlDocument item that is a subclass of
Document?

class HtmlDocument(Document):
    pass # imagine new html functionality here





Let’s try to get its size:

>>> htmldoc = HtmlDocument('<p>Hello world!</p>')
>>> size(htmldoc)
Traceback (most recent call last):
   ...
KeyError: ...





Uh oh, that doesn’t work! There’s nothing registered for the
HtmlDocument class.

We need to remember to also call register_size for
HtmlDocument. We can reuse document_size:

>>> register_size(HtmlDocument, document_size)





Now size will work:

>>> size(htmldoc)
19





This is getting rather complicated, requiring not only foresight and
extra implementation work for the developers of size but also
extra work for the person who wants to subclass a content item.

Hey, we should write a system that generalizes this and automates a
lot of this, and gives us a more universal registry API, making our
life easier! And that’s Reg.




Doing this with Reg

Let’s see how we could implement size using Reg.

First we need our generic size function:

def size(obj):
    raise NotImplementedError





This function raises NotImplementedError as we don’t know how to
get the size for an arbitrary Python object. Not very useful yet. We need
to be able to hook the actual implementations into it. To do this, we first
need to transform the size function to a generic one:

import reg
size = reg.generic(size)





We can actually spell these two steps in a single step, as
reg.generic() can be used as decorator:

@reg.generic
def size(obj):
    raise NotImplementedError





We can now register the various size functions for the various content
items in a registry:

r = reg.Registry()
r.register(size, [Document], document_size)
r.register(size, [Folder], folder_size)
r.register(size, [Image], image_size)
r.register(size, [File], file_size)





We can now use our size function:

>>> size(doc, lookup=r)
12






The lookup argument

What’s this lookup argument about? It lets you specify explicitly
what registry Reg looks in to look up the size functions, on our case
r.

If we forget it, we’ll get an error:

>>> size(doc)
Traceback (most recent call last):
  ...
NoImplicitLookupError: Cannot lookup without explicit lookup argument because no implicit lookup was configured.





If your generic function implementation defines a lookup
argument it will receive the lookup used. This way you can continue
passing the lookup along explicitly from generic function to generic
function if you want to.

It’s annoying to have to keep spelling this out all the time – we
don’t do it in our folder_size implementation, for instance, so
that will fail too, even if we pass a lookup to the our size
function, as it won’t be passed along implicitly.

>>> size(folder, lookup=r)
Traceback (most recent call last):
  ...
NoImplicitLookupError: Cannot lookup without explicit lookup argument because no implicit lookup was configured.







Using reg.implicit.Implicit.initialize() we can specify an
implicit lookup argument for all generic lookups so we don’t have to
pass it in anymore:

from reg import implicit
implicit.initialize(r)





Now we can just call our new generic size:

>>> size(doc)
12





And it will work for folder too:

>>> size(folder)
25





It will work for subclasses too:

>>> size(htmldoc)
19





Reg knows that HtmlDocument is a subclass of Document and will
find document_size automatically for you. We only have to register
something for HtmlDocument if we would want to use a special,
different size function for HtmlDocument.




Using classes

The previous example worked well for a single function to get the
size, but what if we wanted to add a feature that required multiple
methods, not just one?

Let’s imagine we have a feature to get the icon for a content object
in our CMS, and that this consists of two methods, with a way to get a
small icon and a large icon. We want this API:

from abc import ABCMeta, abstractmethod

class Icon(object):
    __metaclass__ = ABCMeta
    @abstractmethod
    def small(self):
        """Get the small icon."""

    @abstractmethod
    def large(self):
        """Get the large icon."""






abc module?

We’ve used the standard Python abc module [http://docs.python.org/2/library/abc.html] to set the API in
stone. But that’s just a convenient standard way to express it. The
abc module is not in any way required by Reg. You don’t need to
implement the API in a base class either. We just do it in this
example to be explicit.



Let’s implement the Icon API for Document:

def load_icon(path):
    return path # pretend we load the path here and return an image obj

class DocumentIcon(Icon):
   def __init__(self, document):
      self.document = document

   def small(self):
      if not self.document.text:
          return load_icon('document_small_empty.png')
      return load_icon('document_small.png')

   def large(self):
      if not self.document.text:
          return load_icon('document_large_empty.png')
      return load_icon('document_large.png')





The constructor of DocumentIcon receives a Document instance
as its first argument. The implementation of the small and
large methods uses this instance to determine what icon to produce
depending on whether the document is empty or not.

We can call DocumentIcon an adapter, as it adapts the original
Document class to provide an icon API for it. We can use it
manually:

>>> icon_api = DocumentIcon(doc)
>>> icon_api.small()
'document_small.png'
>>> icon_api.large()
'document_large.png'





But we want to be able to use the Icon API in a generic way, so let’s
create a generic function that gives us an implementation of Icon back for
any object:

@reg.generic
def icon(obj):
    raise NotImplementedError





We can now register the DocumentIcon adapter class for this
function and Document:

r.register(icon, [Document], DocumentIcon)





We can now use the generic icon to get Icon API for a
document:

>>> api = icon(doc)
>>> api.small()
'document_small.png'
>>> api.large()
'document_large.png'





We can also register a FolderIcon adapter for Folder, a
ImageIcon adapter for Image, and so on. For the sake of
brevity let’s just define one for Image here:

class ImageIcon(Icon):
    def __init__(self, image):
        self.image = image

    def small(self):
        return load_icon('image_small.png')

    def large(self):
        return load_icon('image_large.png')

r.register(icon, [Image], ImageIcon)





Now we can use icon to retrieve the Icon API for any item in
the system for which an adapter was registered:

>>> icon(doc).small()
'document_small.png'
>>> icon(doc).large()
'document_large.png'
>>> icon(image).small()
'image_small.png'
>>> icon(image).large()
'image_large.png'








Multiple dispatch

Sometimes we want to adapt more than one thing at the time. The
canonical example for this is a web view lookup system. Given a
request and a model, we want to find a view that represents these. The
view needs to get the request, for parameter information, POST body,
URL information, and so on. The view also needs to get the model, as
that is what will be represented in the view.

You want to be able to vary the view depending on the type of the request
as well as the type of the model.

Let’s imagine we have a Request class:

class Request(object):
    pass





We’ll use Document as the model class.

We want a generic view function that given a request and a model
generates content for it:

@reg.generic
def view(request, model):
    raise NotImplementedError





We now define a concrete view for Document:

def document_view(request, document):
    return "The document content is: " + document.text





Let’s register the view in the registry:

r.register(view, [Request, Document], document_view)





We now see why the second argument to register() is a list; so far
we only supplied a single entry in it, but here we supply two, as we
have two parameters on which to do dynamic dispatch.

Given a request and a document, we can now adapt it to IView:

>>> request = Request()
>>> view(request, doc)
'The document content is: Hello world!'










Service Discovery

Sometimes you want your application to have configurable services. The
application may for instance need a way to send email, but you don’t
want to hardcode any particular way into your app, but instead leave
this to a particular deployment-specific configuration. You can use the Reg
infrastructure for this as well.

The simplest way to do this with Reg is by using a generic service lookup
function:

@reg.generic
def emailer():
    raise NotImplementedError





Here we’ve created a generic function that takes no arguments (and thus does
no dynamic dispatch). But it’s still generic, so we can plug in its actual
implementation elsewhere, into the registry:

sent = []

def send_email(sender, subject, body):
    # some specific way to send email
    sent.append((sender, subject, body))

def actual_emailer():
    return send_email

r.register(emailer, [], actual_emailer)





Now when we call emailer, we’ll get the specific service we want:

>>> the_emailer = emailer()
>>> the_emailer('someone@example.com', 'Hello', 'hello world!')
>>> sent
[('someone@example.com', 'Hello', 'hello world!')]





In this case we return the function send_email from the
emailer() function, but we could return any object we want that
implements the service, such as an instance with a more extensive API.


classgeneric

Reg generic functions can be used to replace methods, so that you can
follow the open/closed principle and add functionality to a class
without modifying it. This works for instance methods, but what about
classmethod? This takes the class as the first argument, not an
instance. Reg’s @reg.generic is not very useful there, as you
cannot associate functions for class arguments. This is because the
class of the class would be used, which is type, rather useless
for writing more specialized generic functions.

Reg offers a special @reg.classgeneric that lets you write classmethods
as generic functions. Here’s what it looks like:

@reg.classgeneric
def something(cls):
    raise NotImplementedError()





Now you can write an implementation, this one a catch-all for
all classes (that derive from object):

def something_for_object(cls):
    return "Something for %s" % cls

r.register(something, [object], something_for_object)

class DemoClass(object):
    pass





When we now call something() with DemoClass as the first
argument we get the expected output:

>>> something(DemoClass)
"Something for <class 'DemoClass'>"





Just like @reg.generic this knows about inheritance. So, you can
write more specific implementations for particular classes:

class ParticularClass(object):
    pass

def something_particular(cls):
    return "Particular for %s" % cls

r.register(something, [ParticularClass], something_particular)





When we call something now with ParticularClass as the argument,
then something_particular is called:

>>> something(ParticularClass)
"Particular for <class 'ParticularClass'>"





The rest of the arguments are as for @reg.generic and are normal
instances, not classes. If they are listed in the second argument to
.register then they participate in multiple dispatch.






Lower level API


Registering non-functions

Some special use cases require the registration of other objects besides
callables. Reg exposes an API to get at these:

@reg.generic
def foo(model):
    raise NotImplementedError

thing = "Thing"

r.register(foo, [Document], thing)





We’ve registered thing for generic foo of Document now,
not a function. Because thing is not a function, calling foo
for Document will result in an error:

>>> foo(doc)
Traceback (most recent call last):
  ...
TypeError: 'str' object is not callable





We can still get at thing with a special method on the function called
component:

>>> foo.component(doc)
"thing"








Getting all

As we’ve seen, Reg supports inheritance. size for instance was
registered for Document instances, and is therefore also available
of instances of its subclass, HtmlDocument:

>>> size.component(doc) is document_size
True
>>> size.component(htmldoc) is document_size
True





Using the special all function we can also get an iterable of
all the components registered for a particular instance, including
those of base classes. Right now this is pretty boring as there’s
only one of them:

>>> list(size.all(doc))
[<function document_size at ...>]
>>> list(size.all(htmldoc))
[<function document_size at ...>]





We can make this more interesting by registering a special
htmldocument_size to handle HtmlDocument instances:

def htmldocument_size(doc):
   return len(doc.text) + 1 # 1 so we can see a difference

r.register(size, [HtmlDocument], htmldocument_size)





size.all() for htmldoc now also gives back the more specific
htmldocument_size:

>>> list(size.all(htmldoc))
[<function htmldocument_size at ...>, <function document_size at ...>]








Using the Registry directly

The key under which we register something in a registry in fact doesn’t
need to be a function. We can use any hashable object, such as a string:

r.register('some key', [Document], 'some registered')





We can’t get it at it using a generic dispatch function anymore
now. We can use the reg.Lookup API instead (in this case it’s
provided by Registry directly). Here’s what to do:

>>> r.component('some key', [doc])
'some registered'
>>> list(r.all('some key', [doc]))
['some registered']










Composition

Reg separates the registration API from the lookup API. The
Registry implementation we’ve been using combines both in one, but
we can separate the two instead. This is useful for a framework
developer that may want to allow the composition of multiple lookups
together. It also supports caching lookups to help performance.


ClassRegistry

reg.ClassRegistry does not offer the full lookup API but does
still allows registration:

cr = reg.ClassRegistry()





We can use this to do registration as before:

@reg.generic
def example():
    raise NotImplementedError

def document_example(doc):
    return "Document Example"

cr.register(example, [Document], document_example)





So far nothing is different. But ClassRegistry supports the class
lookup API that lets you lookup registrations by the class of
what was registered instead of by instance. Here’s how:

>>> cr.get(example, [Document])
<function document_example at ...>





It is still inheritance aware, too:

>>> cr.get(example, [HtmlDocument])
<function document_example at ...>





We can get the original instance-based lookup API from a class lookup
by wrapping it in a Lookup:

>>> l = reg.Lookup(cr)
>>> l.component(example, [doc])
<function document_example at ...>








Caching

Now the fun starts. We can turn a class lookup in a faster, caching
class lookup using reg.CachingClassLookup:

>>> caching = reg.CachingClassLookup(cr)
>>> caching.get(example, [Document])
<function document_example at ...>





Turning it back into a lookup gives us a caching version of what we had
before:

>>> caching_lookup = reg.Lookup(caching)
>>> caching_lookup.component(example, [doc])
<function document_example at ...>





You’ll have to trust us on this, but it’s faster the second time as
it’s cached!




Composing class lookups

You can also compose class lookups together into a bigger class
lookup. This allows you to compose and partition behavior, sharing
behavior where you want it but isolating it otherwise.

The use case for this is a core framework that provides default
behavior, with applications written on top that extend or override
this default behavior. If one application overrides the behavior,
another application written on top of the same framework should not be
affected.

Let’s look at an example of this. First we define three registries:
for the framework, for one application built with it, and for another
application built with it:

framework = reg.ClassRegistry()
app = reg.ClassRegistry()
other_app = reg.ClassRegistry()





We can now compose the framework and the app class lookup using
reg.ListClassLookup:

app_combined = reg.Lookup(reg.ListClassLookup([app, framework]))





We compose the framework and the other_app class lookup
separately:

other_app_combined = reg.Lookup(reg.ListClassLookup([other_app, framework]))





Our hypothetical example framework provides a serialization API. The
idea is that we can call serialize on an object to get a
representation of that object as dictionaries and lists, JSON-style:

@reg.generic
def serialize(obj):
   raise NotImplementedError





We’ve also provided a default serialization for documents in our
framework:

def document_serialize(doc):
   return { 'text': doc.text }

framework.register(serialize, [Document], document_serialize)





Let’s try it with the core framework itself:

>>> serialize(doc, lookup=reg.Lookup(framework))
{'text': 'Hello world!'}





It also works in the app_combined application and the
other_app_combined application:

>>> serialize(doc, lookup=app_combined)
{'text': 'Hello world!'}
>>> serialize(doc, lookup=other_app_combined)
{'text': 'Hello world!'}





Now we decide that we want to override the default serialization for
Document, but only in app, not in the framework itself, so
that other_app is unaffected:

def app_document_serialize(doc):
   return { 'content': 'The content: %s' % doc.text }

app.register(serialize, [Document], app_document_serialize)





Our application has the new behavior now:

>>> serialize(doc, lookup=app_combined)
{'content': 'The content: Hello world!'}





But our framework is not affected, and neither is other_app:

>>> serialize(doc, lookup=reg.Lookup(framework))
{'text': 'Hello world!'}
>>> serialize(doc, lookup=other_app_combined)
{'text': 'Hello world!'}





So far in this example we’ve used the explicit lookup
argument. But how does this combine with the implict lookup facility?
Changing the implicit lookup before each application switch seems
daunting, but in practice you’d typically only switch the implicit
application context once per thread. The implicit lookup is thread
local, so that one thread’s implicit lookup does not affect the other.
Multiple threads can this way run different applications all sharing
the same framework. This does require doing all the required
registrations during application startup time, and then not modifying
them anymore during run time, as registration is not thread-safe, just
lookup.







          

      

      

    


    
         Copyright 2010 - 2014, Morepath Developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Reg 0.8 documentation 
 
      

    


    
      
          
            
  
API


	
class reg.IRegistry

	A registration API for components.


	
clear()

	Clear registry of all registrations.






	
exact(key, classes)

	Get registered component for exactly key and classes.





	Parameters:	
	key (hashable object, normally function.) – Get component for this key.

	classes (list of classes.) – List of classes for which to get component.






	Returns:	registered component, or None.







Does not go to base classes, just returns exact registration.

Returns None if no registration exists.






	
register(key, classes, component)

	Register a component.





	Parameters:	
	key (hashable object, normally function.) – Register component for this key.

	classes (list of classes.) – List of classes for which to register component.

	component (object.) – Any python object, often a function.
Can be a reg.Matcher instance.









The key is a hashable object, often a function object, by
which the component can be looked up.

classes is a list of 0 to n classes that the component is
registered for. If multiple sources are listed, a registration
is made for that combination of sources.

The component is a python object (function, class, instance,
etc) that is registered. If you’re working with multiple dispatch,
you would register a function that expects instances of the classes
in classes as its arguments.










	
class reg.IClassLookup

	
	
all(key, classes)

	Look up all components, by key and classes.





	Parameters:	
	key (hashable object, normally function.) – Get components for this key.

	classes (list of classes.) – List of classes for which to get components.






	Returns:	iterable of found components.







The key is a hashable object, often a function object, by
which the components are looked up.

classes is a list of 0 to n classes that we use to look up the
components. If multiple classes are listed, the lookup is made
for that combination of classes. All registered components for
combinations of base classes are also returned.

A Cartesian product is made of all combinations of base
classes to do this, sorted by inheritance, first class to last
class, most specific to least specific.

This calculation is relatively expensive so you can wrap a
class lookup in a reg.CachingClassLookup proxy to
speed up subsequent calls.

If no components can be found, the iterable returned will be empty.






	
get(key, classes)

	Look up a component, by key and classes of arguments.





	Parameters:	
	key (hashable object, normally function.) – Get component for this key.

	classes (list of classes.) – List of classes for which to get component.






	Returns:	registered component, or None.







The key is a hashable object, often a function object, by
which the component is looked up.

classes is a list of 0 to n classes that we use to look up the
component. If multiple classes are listed, the lookup is made
for that combination of classes.

In order to find the most matching registered component, a
Cartesian product is made of all combinations of base classes given,
sorted by inheritance, first class to last class, most specific to
least specific.

This calculation is relatively expensive so you can wrap a
class lookup in a reg.CachingClassLookup proxy to
speed up subsequent calls.

If the component can be found, it will be returned. If the
component cannot be found, None is returned.










	
class reg.ClassRegistry

	Bases: reg.registry.IRegistry, reg.registry.IClassLookup






	
class reg.Registry

	Bases: reg.registry.IRegistry, reg.lookup.Lookup






	
class reg.Lookup(class_lookup)

	Look up objects for a key.

The lookup API is also available directly on a function decorated
with reg.generic(). The call method stands in for the actual
function call. If the call method is in use from reg.generic,
ComponentLookupError is never raised, and instead the fall
back is to the function being decorated.


	
all(key, args, class_method=False, predicates=None)

	Lookup up all components registered for args.





	Parameters:	
	key (hashable object, normally function.) – Look up components for this key.

	args (list of objects.) – Look up components for these arguments.

	class_method (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Treat first argument as class instead of instance.

	predicates (dict.) – predicates (used by Matcher)






	Returns:	iterable of registered components.







The behavior of this method is like that of component, but it
looks up all the matching components for the arguments. This
means that if one component is registered for a class and
another for its base class, all() with an instance of the
class as its argument will return both components.

Will check whether the found component is an Matcher, in which
case it will be called with args. If non-None is returned, the
found value is included as a matching component.  If a matcher
is involved and the predicates parameter is supplied, this
will be used for the matcher, overriding any predicate
calculation it may do itself. Otherwise the predicates
parameter has no effect.

If no components can be found, the iterable will be empty.






	
call(key, args, default=<Sentinel>, class_method=False, **kw)

	Call function based on multiple dispatch on args.





	Parameters:	
	key (hashable object, normally function.) – Call function for this key.

	args (list of objects.) – Call function with these arguments.

	default (object.) – default value to return if lookup fails.

	class_method (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Treat first argument as class instead of instance.

	kw – extra keyword arguments passed to the function called.






	Returns:	result of function call.




	Raises:	ComponentLookupError







The behavior of this method is like that of component, but it
performs an extra step: it calls the found component with the
args given as arguments.

This amounts to an implementation of multiple dispatch: zero
or more arguments can be used to dispatch the function on.

If the found component has a lookup argument, it will pass the
lookup to this argument too. This allows you to pass along lookup
completely explicitly between generic functions.






	
component(key, args, default=<Sentinel>, class_method=False, predicates=None)

	Look up a component.





	Parameters:	
	key (hashable object, normally function.) – Look up component for this key.

	args (list of objects.) – Look up component for these arguments.

	default (object.) – default value to return if lookup fails.

	class_method (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Treat first argument as class instead of instance.

	predicates (dict.) – optional predicate ditcionary for matcher,
overriding the matcher’s predicate calculation.






	Returns:	registered component.




	Raises:	ComponentLookupError







A component can be any Python object.

key is a hashable object that is used to determine what to
look up. Normally it is a Python function.

args is a list of 0 to n objects that we use to look up the
component. The classes of the args are used to do the look
up. If multiple args are listed, the lookup is made for that
combination of args.

If the component found is an instance of class:Matcher, it
will be called with args as parameters
(matcher(*args)). The matcher can return an object, in
which case will be returned as the real matching component. If
the matcher returns None it will look for a match higher
up the ancestor chain of args. If a predicates argument is
supplied this is used by the matcher instead of doing its own
predicate calculation from the arguments. This can be useful
in combination with the reg.PredicateMatcher to
override which predicates are used in a lookup.

If a component can be found, it will be returned. If the
component cannot be found, a ComponentLookupError
will be raised, unless a default argument is specified, in
which case it will be returned.










	
class reg.Matcher

	Look up by calling and returning value.

If a component that subclasses Matcher is registered, it
it is called with args, i.e. matcher(*args). The resulting value
is considered to be the looked up component. If the resulting value is
None, no component is found for this matcher.

A matcher can be found multiple times during a lookup (if the
first matcher results in None. Information such as predicates
may have to be calculated multiple times in that case. This can be
avoided by defining a predicates method which takes the
arguments used for the lookup as arguments. The result should be a
dictionary which is passed as keyword arguments into this matcher,
as well as any further candidate matchers if this one returns None.






	
exception reg.ComponentLookupError

	Error raised when a component cannot be found.

Will only be raised if nod default argument was supplied
during lookup.






	
class reg.ListClassLookup(lookups)

	Bases: reg.registry.IClassLookup

A simple list of class lookups functioning as a single IClassLookup.

Go through all items in the list, starting at the beginning and
try to find the component. If found in a lookup, return it right away.






	
class reg.ChainClassLookup(lookup, next)

	Bases: reg.registry.IClassLookup

Chain a class lookup on top of another class lookup.

Look in the supplied IClassLookup object first, and if not found, look
in the next IClassLookup object. This way multiple IClassLookup objects
can be chained together.






	
class reg.CachingClassLookup(class_lookup)

	Bases: reg.registry.IClassLookup

Cache an existing class lookup.

All previous accesses to class lookup are cached.






	
reg.generic(func)

	Turn a function into a generic function.





	Parameters:	func (function.) – Function to turn into a multiple dispatch function.


	Returns:	multiple dispatch version of function.





When someone calls the wrapped function, the arguments determine
what actual function will be called. In particular the classes of
the arguments are inspected. For each combination of arguments a
different function can be registered.

The function itself provides a default implementation in case no
more specific registered function can be found for its arguments.

Can be used as a decorator:

@reg.generic
def my_function(...):
    ...










	
reg.classgeneric(func)

	Turn a function into a generic class function, like @classmethod.





	Parameters:	func (function.) – Function to turn into a multiple dispatch function.


	Returns:	multiple dispatch version of function.





When someone calls the wrapped function, the arguments determine
what actual function will be called. In case of the first
argument, the argument should be a class. For the other arguments,
the classes of the arguments are used instead. For each
combination of arguments a different function can be registered.

The function itself provides a default implementation in case no
more specific registered function can be found for its arguments.

Can be used as a decorator:

@reg.classgeneric
def my_function(...):
    ...










	
class reg.PredicateRegistry(predicates)

	A registry that can be used to index items by predicate.






	
class reg.Predicate(name, index_factory, calc=None, default=None)

	A predicate.






	
class reg.KeyIndex

	An index for matching predicates by key.






	
exception reg.PredicateRegistryError

	An error using the predicate registry.






	
class reg.implicit.Implicit

	Implicit global lookup.

There will only one singleton instance of this, called
reg.implicit. The lookup can then be accessed using
reg.implicit.lookup.

Generic functions as well as their component and all
methods make use of this information if you do not pass an
explicit lookup argument to them. This is handy as it becomes
unnecessary to have to pass a lookup object everywhere.

The drawback is that this single global lookup is implicit, which
makes it harder to test in isolation. Reg supports testing with
the explicit lookup argument, but that is not useful if you
are testing code that relies on an implicit lookup. Therefore Reg
strives to make the implicit global lookup as explicit as
possible so that it can be manipulated in tests where this is
necessary.

It is also possible for a framework to change the implicit lookup
during run-time. This is done by simply assigning to
implicit.lookup. The lookup is stored on a thread-local and is
unique per thread.

Reg offers facilities to compose such a custom lookup:


	reg.ListClassLookup and reg.ChainClassLookup which
can be used to chain multiple IClassLookup instances together.

	reg.CachingClassLookup which can be used to create a
faster caching version of an IClassLookup.

	reg.Lookup which can be used to turn a IClassLookup
into a proper ILookup.



To change the lookup back to a lookup in the global implicit
registry, call reset.

The implicit lookup is thread-local: each thread has a separate
implicit global lookup.


	
clear()

	Clear global implicit lookup.






	
initialize(lookup)

	Initialize implicit with lookup.





	Parameters:	lookup (ILookup.) – The lookup that will be the global implicit lookup.










	
lookup

	Get the implicit ILookup.






	
reset()

	Reset global implicit lookup to original lookup.

This can be used to wipe out any composed lookups that
were installed in this thread.










	
exception reg.NoImplicitLookupError

	No implicit lookup was registered.

Register an implicit lookup by calling
reg.implicit.initialize(), or pass an explicit lookup
argument to generic function calls.






	
reg.mapply(func, *args, **kw)

	Apply keyword arguments to function only if it defines them.

So this works without error as b is ignored:

def foo(a):
    pass

mapply(foo, a=1, b=2)





Zope has an mapply that does this but a lot more too. py.test has
an implementation of getting the argument names for a
function/method that we’ve borrowed.






	
reg.arginfo(callable)

	Get information about the arguments of a callable.

Returns a inspect.ArgSpec object as for
inspect.getargspec() [http://docs.python.org/2.7/library/inspect.html#inspect.getargspec].

inspect.getargspec() [http://docs.python.org/2.7/library/inspect.html#inspect.getargspec] returns information about the arguments
of a function. arginfo also works for classes and instances with a
__call__ defined. Unlike getargspec, arginfo treats bound methods
like functions, so that the self argument is not reported.

arginfo caches previous calls (except for instances with a
__call__), making calling it repeatedly cheap.

This was originally inspired by the pytest.core varnames() function,
but has been completely rewritten to handle class constructors,
also show other getarginfo() information, and for readability.









          

      

      

    


    
         Copyright 2010 - 2014, Morepath Developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Reg 0.8 documentation 
 
      

    


    
      
          
            
  
Developing Reg


Install Reg for development

First make sure you have virtualenv [https://pypi.python.org/pypi/virtualenv] installed for Python 2.7.

Now create a new virtualenv somewhere for Reg’s development:

$ virtualenv /path/to/ve_reg





The goal of this is to isolate you from any globally installed
versions of setuptools, which may be incompatible with the
requirements of the buildout tool. You should also be able to recycle
an existing virtualenv, but this method guarantees a clean one.

Clone Reg from github (https://github.com/morepath/reg) and go to the
reg directory:

$ git clone git@github.com:morepath/reg.git
$ cd reg





Now we need to run bootstrap.py to set up buildout, using the Python from the
virtualenv we’ve created before:

$ /path/to/ve_reg/bin/python bootstrap.py





This installs buildout, which can now set up the rest of the development
environment:

$ bin/buildout





This will download and install various dependencies and tools.




Running the tests

You can run the tests using py.test [http://pytest.org/latest/]. Buildout will have installed
it for you in the bin subdirectory of your project:

$ bin/py.test reg





To generate test coverage information as HTML do:

$ bin/py.test --cov reg --cov-report html





You can then point your web browser to the htmlcov/index.html file
in the project directory and click on modules to see detailed coverage
information.




Running the documentation tests

The documentation contains code. To check these code snippets, you
can run this code using this command:

$ bin/sphinxpython bin/sphinx-build  -b doctest doc out








Building the HTML documentation

To build the HTML documentation (output in doc/build/html), run:

$ bin/sphinxbuilder








Various checking tools

The buildout will also have installed flake8 [https://pypi.python.org/pypi/flake8], which is a tool that
can do various checks for common Python mistakes using pyflakes [https://pypi.python.org/pypi/pyflakes],
check for PEP8 [http://www.python.org/dev/peps/pep-0008/] style compliance and can do cyclomatic complexity [https://en.wikipedia.org/wiki/Cyclomatic_complexity]
checking. To do pyflakes and pep8 checking do:

$ bin/flake8 reg





To also show cyclomatic complexity, use this command:

$ bin/flake8 --max-complexity=10 reg











          

      

      

    


    
         Copyright 2010 - 2014, Morepath Developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Reg 0.8 documentation 
 
      

    


    
      
          
            
  
History of Reg

Reg was written by me, Martijn Faassen; the core mapping code was
originally co-authored by Thomas Lotze.

Reg is heavily inspired by the Zope Component Architecture (ZCA),
namely the zope.interface and zope.component packages. Reg is
however a completely different codebase with an entirely different
API. At the end I’ve included a brief history of the ZCA.


Reg History

The Reg code went through a bit of history:

The core registry (mapping) code was conceived by Thomas Lotze and
myself as a speculative sandbox project in January of 2010. It was
called iface then:

http://svn.zope.org/Sandbox/faassen/iface/

In early 2012, I was at a sprint in Nürnberg, Germany organized by
Novareto. Inspired by discussions with the sprint participants,
particularly the Cromlech developers Souheil Chelfouh and Alex Garel,
I created a project called Crom:

https://github.com/faassen/crom

Crom focused on rethinking component and adapter registration and
lookup APIs, but was still based on zope.interface for its
fundamental AdapterRegistry implementation and the Interface
metaclass. I worked a bit on Crom after the sprint, but soon I moved
on to other matters.

At the Plone conference held in Arnhem, the Netherlands in October
2012, I gave a lightning talk about Crom. I figured what Crom needed
was a rewrite of the core adapter registry, i.e. what was in the iface
project. In the end of 2012 I mailed Thomas Lotze asking whether I
could merge iface into Crom, and he gave his kind permission.

The core registry code of iface was never quite finished however, and
while the iface code was now in Crom, Crom didn’t use it yet. Thus it
lingered some more.

In July 2013 in development work for CONTACT (contact.de), I found
myself in need of clever registries. Crom also had some configuration
code intermingled with the component architecture code and I didn’t
want this anymore.

So I reorganized the code yet again into another project, this one:
Reg. I then finished the core mapping code and hooked it up to the
Crom-style API, which I refactored further. For interfaces, I used
Python’s abc module.

For a while during internal development this codebase was called
Comparch, but this conflicted with another name so I decided to
call it Reg, short for registry, as it’s really about clever
registries more than anything else.

After my first announcement [http://blog.startifact.com/posts/reg-component-architecture-reimagined.html] of Reg to the world in september 2013 I
got the question why I shouldn’t just use PEP 443, which has a generic
function implementation (single dispatch). I started thinking I should
convert Reg to a generic function implementation, as it was already
very close. After talking to some people about this at PyCon DE in
october, I did the refactoring [http://blog.startifact.com/posts/reg-now-with-more-generic.html] to use generic functions throughout
and no interfaces for lookup, and this is the current Reg you see.




Brief history of Zope Component Architecture

Reg is heavily inspired by zope.interface and zope.component,
by Jim Fulton and a lot of Zope developers. zope.interface has a
long history, going all the way back to December 1998, when a
scarecrow interface package was released for discussion:

http://old.zope.org/Members/jim/PythonInterfaces/Summary/

http://old.zope.org/Members/jim/PythonInterfaces/Interface/

A later version of this codebase found itself in Zope, as Interface:

http://svn.zope.org/Zope/tags/2-8-6/lib/python/Interface/

A new version called zope.interface was developed for the Zope 3
project, somewhere around the year 2001 or 2002 (code historians,
please dig deeper and let me know). On top of this a zope.component
library was constructed which added registration and lookup APIs on
top of the core zope.interface code.

zope.interface and zope.component are widely used as the core of the
Zope 3 project. zope.interface was adopted by other projects, such as
Zope 2, Twisted, Grok, BlueBream and Pyramid.







          

      

      

    


    
         Copyright 2010 - 2014, Morepath Developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Reg 0.8 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   r
   


   
     			

     		
       r	

     
       	
       	
       reg	
       

   



          

      

      

    


    
         Copyright 2010 - 2014, Morepath Developers.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Reg 0.8 documentation 
 
      

    


    
      
          
            

Index



 A
 | C
 | E
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 


A


  	
      
  	all() (reg.IClassLookup method)
  


      	
        
  	(reg.Lookup method)
  


      


  

  	
      
  	arginfo() (in module reg)
  


  





C


  	
      
  	CachingClassLookup (class in reg)
  


      
  	call() (reg.Lookup method)
  


      
  	ChainClassLookup (class in reg)
  


      
  	classgeneric() (in module reg)
  


  

  	
      
  	ClassRegistry (class in reg)
  


      
  	clear() (reg.implicit.Implicit method)
  


      	
        
  	(reg.IRegistry method)
  


      


      
  	component() (reg.Lookup method)
  


      
  	ComponentLookupError
  


  





E


  	
      
  	exact() (reg.IRegistry method)
  


  





G


  	
      
  	generic() (in module reg)
  


  

  	
      
  	get() (reg.IClassLookup method)
  


  





I


  	
      
  	IClassLookup (class in reg)
  


      
  	Implicit (class in reg.implicit)
  


  

  	
      
  	initialize() (reg.implicit.Implicit method)
  


      
  	IRegistry (class in reg)
  


  





K


  	
      
  	KeyIndex (class in reg)
  


  





L


  	
      
  	ListClassLookup (class in reg)
  


      
  	Lookup (class in reg)
  


  

  	
      
  	lookup (reg.implicit.Implicit attribute)
  


  





M


  	
      
  	mapply() (in module reg)
  


  

  	
      
  	Matcher (class in reg)
  


  





N


  	
      
  	NoImplicitLookupError
  


  





P


  	
      
  	Predicate (class in reg)
  


      
  	PredicateRegistry (class in reg)
  


  

  	
      
  	PredicateRegistryError
  


  





R


  	
      
  	reg (module)
  


      
  	register() (reg.IRegistry method)
  


  

  	
      
  	Registry (class in reg)
  


      
  	reset() (reg.implicit.Implicit method)
  


  







          

      

      

    


    
         Copyright 2010 - 2014, Morepath Developers.
      Created using Sphinx 1.2.2.
    

  _static/down-pressed.png





_static/comment.png





_static/down.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Reg 0.8 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2010 - 2014, Morepath Developers.
      Created using Sphinx 1.2.2.
    

  

_static/minus.png





_static/ajax-loader.gif





_static/plus.png





_static/comment-bright.png





_static/comment-close.png





_static/up.png





_static/file.png





_static/up-pressed.png





